DOI: 10.1002/anie.200801674

## A Cationic Cyclic Phosphorus(III) Azide\*\*

Dirk Michalik, Axel Schulz,\* Alexander Villinger, and Nico Weding

Recently we have become interested in GaCl<sub>3</sub>-assisted [3+2] cycloaddition,<sup>[1]</sup> which led to the isolation of the first binary phosphorus/nitrogen five-membered heterocycles (e.g. tetrazaphospholes<sup>[2]</sup> and triazadiphospholes<sup>[3]</sup>) and arsenic/nitrogen five-membered heterocycles (e.g. tetrazarsole<sup>[4]</sup>). Access to tetrazaphospholes and -arsoles was gained by two different synthetic approaches, both triggered by the Lewis acid GaCl<sub>3</sub> (Scheme 1): A) The reaction of *cyclo*-1,3-dipnicta-2,4-diazane

$$R = CI$$

$$R = CI$$

$$R = R$$

$$R = CI$$

$$R = R$$

$$R$$

**Scheme 1.** Synthetic routes to binary Group 15 heterocycles (E=As, P; R=bulky groups such as  $terphenyl=2,6-Mes_2C_6H_3$  or  $Mes*=2,4,6-tBu_3C_6H_2$ ).

1 with Me<sub>3</sub>SiN<sub>3</sub> in the presence of GaCl<sub>3</sub> (Scheme 1, synthetic route A with pnictogen E=As, P and  $R=Mes^*=2,4,6$ - $tBu_3C_6H_2$ ) led to tetrazaphospholes and -arsoles 3 via monomeric iminopnictogen species 2. B) The same pnictogen heterocycle 3 is obtained in the reaction of Me<sub>3</sub>SiN<sub>3</sub> and Mes\*N(SiMe<sub>3</sub>)ECl<sub>2</sub><sup>[5]</sup> when GaCl<sub>3</sub> is added. In this case, the reactive species 2 is generated in situ by GaCl<sub>3</sub>-assisted elimination of Me<sub>3</sub>SiCl.<sup>[4]</sup>

[\*] Dr. D. Michalik, Prof. Dr. A. Schulz, A. Villinger, N. Weding Universität Rostock, Institut für Chemie Albert-Einstein-Strasse 3a, 18059 Rostock (Germany) and Leibniz-Institut für Katalyse e.V. an der Universität Rostock

Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Strasse 29a, 18059 Rostock (Germany) Fax: (+49) 381-498-6382

E-mail: axel.schulz@uni-rostock.de

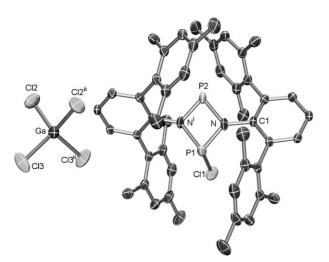
Homepage: http://www.chemie.uni-rostock.de/ac/schulz

[\*\*] Financal support by the Deutsche Forschungsgemeinschaft (SCHU 1170/4-1) is gratefully acknowledged. We also thank LANXESS Deutschland GmbH (Leverkusen) for generous gifts of chemicals.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200801674.

To study the effect of the bulky group on both synthetic routes according to Scheme 1, the supermesityl group (Mes\*) was replaced with the terphenyl group [6] (terphenyl = Ter = 2,6-Mes $_2$ C $_6$ H $_3$ , Mes = 2,4,6-Me $_3$ C $_6$ H $_2$ ) for kinetic stabilization of the iminophosphane (RN=PCl). For route A this substitution led to an astonishingly different reaction channel but not for route B. We report herein 1) the first structural characterization of a 1-chloro-cyclo-1,3-diphospha-2,4-diazenium cation 5, 2) the unexpected formation of the intriguing energetic 1-azido-cyclo-1,3-diphospha-2,4-diazenium- $\mu$ -azido-hexachloridodigallate 6 (Scheme 2) when synthetic

Scheme 2. Synthesis of 5 and 6.


route A is applied, and 3) the formation of a tetrazaphosphole **3** according to synthetic route B (Scheme 1).

Burford et al. assumed that depending on the steric strain of residues R and R' in derivatives of [RPNR']<sub>2</sub>, either the dimer or the monomer can be observed.<sup>[7]</sup> For instance, Mes\*NPCl is observed as an iminophosphane monomer in the solid state,<sup>[8]</sup> while slightly smaller substituents such as 2,6-diisopropylphenyl allow dimerization. In the case of monomeric Mes\*NPCl, addition of GaCl<sub>3</sub> results in [Mes\*NP]<sup>+</sup>-[GaCl<sub>4</sub>]<sup>-</sup>,<sup>[7b]</sup> while trimers and oligomers are formed when GaCl<sub>3</sub> is added to dimers with smaller substituents.<sup>[7c]</sup> These results have prompted us to utilize larger, more sterically hindered groups that are based upon the terphenyl substituent, which has been used to stabilize a variety of low-coordinate main-group-element species.<sup>[6]</sup>

Compound 1 (Scheme 2) is stable as a dimer in dichloromethane at ambient temperature for several days, as shown by <sup>31</sup>P NMR studies ( $\delta$ (<sup>31</sup>P)=226.8 (*cis*), 263.5 ppm (*trans* isomer)). <sup>[9]</sup> However, after adding a solution of GaCl<sub>3</sub> in dichloromethane, the <sup>31</sup>P NMR spectra indicated rapid, quantitative formation of the new phosphorus species 5 within ten minutes at -40 °C (Scheme 2). <sup>[10]</sup> Furthermore, the

## **Communications**

initially colorless solution turned dark red. Two new phosphorus resonances belonging to only one species were observed in the typical range for tricoordinated and dicoordinated phosphorus(III) compounds (doublets at  $\delta = 203.6$  (P1) and 366.6 ppm (P2),  $^2J(^{31}P^{31}P) = 53.0$  Hz; cf.  $\delta = 176.6$  and 365.7 ppm,  $^2J(^{31}P^{31}P) = 73.2$  Hz in 1-chloro-2,4-bis-*tert*-butyl-*cyclo*-1,3-diphospha-2,4-diazeniumtetrachloridoaluminate<sup>[11]</sup>). The solvent volume was then reduced in vacuo to incipient crystallization, and the solution was stored at -25 °C for ten hours, resulting in the deposition of red crystals of **5** (yield: 96%). Single crystal X-ray studies revealed a 1-chloro-2,4-bis(terphenyl)-*cyclo*-1,3-diphospha-2,4-diazeniumtetra-chloridogallate salt (Figure 1), the first fully characterized 1-



**Figure 1.** ORTEP drawing of the molecular structure of **5**. Thermal ellipsoids are set at the 50% probability level (at 173 K); hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: P1–N 1.664(2), P1–N $^{i}$  1.813(2), P2–N $^{i}$  1.614(2), P2–N 1.736(2), P1–Cl1 1.986(2), N–Cl 1.435(2), Ga–Cl3 2.1507(8), Ga–Cl2 2.1834(9), P1–P2 2.555(2); C1-N-P1 136.9(2), C1-N-P2 124.7(2), P1-N-P2 97.4(1), N-P1-Cl1 101.2(1). Symmetry codes: (i) -x, y, -z+1/2; (ii) -x, y, -z+3/2. $^{[10]}$ 

chloro-*cyclo*-1,3-diphospha-2,4-diazenium salt that is not stabilized by any Lewis base.<sup>[9,12]</sup> Interestingly, upon addition of GaCl<sub>3</sub>, neither monomerization nor any transformation to trimeric or oligomeric species was observed.

The first observation of a monochlorodiphosphadiazenium cation ( $R_2N_2P_2Cl^+$ , R=tBu) in a detailed  $^{31}P$  NMR study was reported by Cowley et al. in the reaction of the corresponding *cyclo*-diphosphadiazane with AlCl<sub>3</sub>, independent of reaction stoichiometry. [^{11}] Later, Burford et al. assumed 1-halo-2,4-di(aryl)-*cyclo*-1,3-dipnicta-2,4-diazenium cations as intermediate species in the reaction of [RNPX]<sub>2</sub> (R=2,6-dimethylphenyl, 2,6-diisopropylphenyl; X=Cl, Br) with GaX<sub>3</sub>, which led to trimeric species [RNPX]<sub>3</sub> by GaX<sub>3</sub>-induced heterocycle expansion. [^{7a,b}]

Despite the surprising formation of **5**, we tried the GaCl<sub>3</sub>-assisted [3+2] cycloaddition and added Me<sub>3</sub>SiN<sub>3</sub> (2 equiv) and another equivalent of GaCl<sub>3</sub> (Scheme 2). Again a clean reaction with only one final product (**6**) was observed  $(\delta^{(31}P) = 197.0, 349.3 \text{ ppm})$ . Removal of the solvent and the

by-product Me<sub>3</sub>SiCl resulted in a red crystalline solid (yield 93%). X-ray quality crystals were obtained from a saturated CH<sub>2</sub>Cl<sub>2</sub> solution of **6**, and the single crystal X-ray study revealed an intriguing 1-azido-*cyclo*-1,3-diphospha-2,4-diazenium- $\mu$ -azidohexachlorido-digallate, the first fully characterized cyclic phosphorus(III) azide cation. [13] Also, the  $\mu$ -azidohexachloridodigallate(-1) anion has not been described to date.

Both **5** and **6** are air- and moisture-sensitive but stable in argon over a long period as solids and in CH<sub>2</sub>Cl<sub>2</sub>. Azide **6** is neither heat- nor shock-sensitive. The dark red color of **5** and **6** vanishes rapidly when traces of H<sub>2</sub>O are present. Compounds **5** and **6** are easily prepared in bulk and are infinitely stable when stored in a sealed tube and kept at -25 °C in the dark. <sup>[10e]</sup> Compound **5** is thermally stable to over 210 °C, while **6** can be heated up to 140 °C, which is quite astonishing for a phosphorus azide. Decomposition starts at these temperatures.

X-ray studies of crystals from the reaction sequences illustrated in Scheme 2 revealed salts **5** and **6** with a *cyclo*-1,3-diphospha-2,4-diazenium cation kinetically protected in the pocket formed by the terphenyl groups (Figures 1 and 2). Compound **5** crystallizes in the monoclinic space group C2/c with four units per cell, while **6** crystallizes in the monoclinic space group  $P2_1/c$  also with four units per cell.<sup>[10]</sup>

As depicted in Figures 1 and 2, the  $P_2N_2$  rings are almost planar (deviation from planarity:  $(N-P1-N-P2) = 2.29(7)^\circ$  in 5,  $(N-P1-N-P2) = -5.5(1)^\circ$  in 6), but slightly distorted with two longer P-N bonds (5:  $d(P1-N^i) = 1.813(2)$  and  $d(P2-N^i) = 1.813(2)$ 

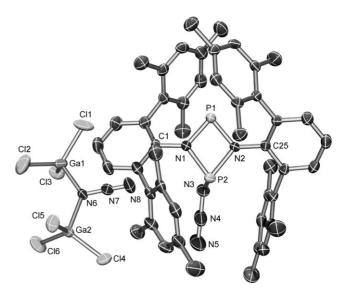
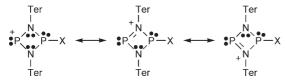




Figure 2. ORTEP drawing of the molecular structure of 6. Thermal ellipsoids are set at the 50% probability level (at 173 K); hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: P1–N1 1.664(3), P1–N2 1.681(3), P1–P2 2.608(1), P2–N1 1.773(3), P2–N2 1.784(2), P2–N3 1.706(3), N1–C1 1.433(4), N2–C25 1.439(4), N3–N4 1.258(4), N4–N5 1.142(4), Ga1–N6 1.987(3), Ga1–Cl1 2.144(1), Ga1–Cl3 2.156(1), Ga1–Cl2 2.160(1), Ga2–N6 1.974(3), Ga2–Cl6 2.145(1), Ga2–Cl4 2.148(2), Ga2–Cl5 2.154(1), N6–N7 1.259(4), N7–N8 1.123(4); Ga2-N6-Ga1 125.5(1), N8-N7-N6 179.3(4), N1-P1-N2 84.6(1), N1-P2-N2 78.6(1), C1-N1-P1 131.0(2), P1-N1-P2 98.7(1), C25-N2-P1 127.4(2), P1-N2-P2 97.6(1), N5-N4-N3 174.0(5).

N)=1.736(2); **6**: d(P2-N1)=1.773(3) and d(P2-N2)=1.784(2) Å) and two considerably shorter P-N bonds (**5**: d(P1-N)=1.664(2) and  $d(P2-N^{\dagger})=1.614(2)$ ; **6**: d(P1-N1)=1.664(3) and d(P1-N2)=1.681(3) Å; cf. 1.656(2) Å in trimeric  $[R_3N_3P_3Cl_2]^+[GaCl_4]^-).^{[7c]}$  The short P-N bonds between 1.61 and 1.68 Å are substantially shorter than the sum of the covalent radii  $(d_{cov}(N-P)=1.8, d_{cov}(N=P)=1.6$  Å), [14] which indicates partial double-bond character for these P-N bonds (Scheme 3). For comparison, the P-NNN



**Scheme 3.** Lewis representation of cyclo-1,3-diphospha-2,4-diazenium cations **5** (X = CI) and **6** ( $X = N_3$ ).

distance of 1.706(3) Å represents a typical single bond. [15] As shown on numerous occasions, [15,16] covalently bound azide groups such as P–NNN display a *trans*-bent configuration (relative to the P atom); **6** has a N5-N4-N3 bond angle of 174.0(5)°, while the bridging azide group attached to the two GaCl<sub>3</sub> moieties is almost linear ((X)(N6-N7-N8) = 179.3(4)°).

Finally, we wanted to find out what happens when GaCl<sub>3</sub> is added to **4** with and without the 1,3-dipole molecule Me<sub>3</sub>SiN<sub>3</sub> (Scheme 1, synthetic route B). When GaCl<sub>3</sub> is added to a solution of **4**, elimination of Me<sub>3</sub>SiCl takes place. The formation of one phosphorus species, which is only stable in solution at low temperatures, is indicated by <sup>31</sup>P NMR spectroscopy ( $\delta$ (<sup>31</sup>P) = 147.5 ppm ( $\Delta \nu_{1/2} \approx 400$  Hz)) were observed. Presumably, after Me<sub>3</sub>SiCl elimination TerN=PCl is formed, which reacts with GaCl<sub>3</sub> under chloride abstraction to form the labile [TerN=P]<sup>+</sup>[GaCl<sub>4</sub>]<sup>-</sup>. The formation of tetrazaphosphole **3** when Me<sub>3</sub>SiN<sub>3</sub> is added confirms the existence of [TerN=P]<sup>+</sup>[GaCl<sub>4</sub>]<sup>-</sup>.

Then again, when a solution of  $Me_3SiN_3$  was added to a solution of **4** in  $CH_2Cl_2$  at  $-40\,^{\circ}C$ , no reaction occurred. Only upon adding  $GaCl_3$  was an instantaneous reaction observed, as shown by  $^{31}P$  NMR spectroscopy studies, resulting again in the formation of tetrazaphosphole **3**, the only final product. The formation of **3** was unequivocally demonstrated by X-ray crystallography (Figure 3) and NMR spectroscopy. The first tetrazaphosphole has only recently been introduced with a supermesityl group as stabilizing unit. [3,10] Interestingly, **3** and **6** possess the same molecular formula unit, and hence can be regarded as constitutional isomers.

In summary, **5** and **6** represent novel binary cyclic P<sup>III</sup>/N four-membered heterocyclic cations with di- and tricoordinated P atoms and a delocalized π bond along the NP<sup>(+)</sup>N unit (Scheme 3). Obviously, starting the reaction from a cyclic precursor leads to chloride abstraction triggered by the action of GaCl<sub>3</sub>, and hence to salt **5** or, when Me<sub>3</sub>SiN<sub>3</sub> is present, to **6**. Starting from a noncyclic disguised dipolarophile such as TerN(SiMe<sub>3</sub>)PCl<sub>2</sub> gives the expected formal [3+2] cyclization product **3** when GaCl<sub>3</sub> is present (Scheme 1). In contrast to Mes\*N=PCl, TerN=PCl forms a stable dimer in the solid state and in solution. Since both bulky groups (Mes\* and Ter)

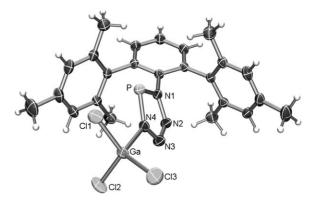



Figure 3. ORTEP drawing of the molecular structure of 3. Thermal ellipsoids are set at the 50% probability level (at 173 K). Selected bond lengths [Å] and angles [°]: P–N4 1.641(1), P–N1 1.665(1), N1–N2 1.371(2), N1–C1 1.447(2), N2–N3 1.273(2), N3–N4 1.370(2), N4–Ga 1.988(1); N4-P-N1 87.76(6), N2-N1-P 114.28(9), N3-N2-N1 111.0(1), N2-N3-N4 112.7(1), N3-N4-P 114.27(9), N3-N4-Ga 117.85(9), P-N4-Ga 126.37(7).

possess similar steric strain, a better electronic stabilization in monomeric Mes\*N=PCl can be assumed. However, steric influences may play a role: the terphenyl groups are bulky but anisotropic, and the interleaving conformation shown in Figures 1 and 2 will certainly help to reduce the steric strain. Compound 6, which was isolated by a formal GaCl<sub>3</sub>-assisted Cl/N<sub>3</sub> exchange in 5, represents an intriguing salt with an azide group in the cation and in the anion.

Received: April 9, 2008 Published online: July 11, 2008

**Keywords:** azides · diphosphadiazane · heterocycles · P/N cations · X-ray diffraction

- [1] a) P. Mayer, A. Schulz, A. Villinger, J. Organomet. Chem. 2007, 692, 2839–2842; b) H. Brand, A. Schulz, A. Villinger, Z. Anorg. Allg. Chem. 2007, 633, 22–35.
- [2] S. Herler, A. Villinger, J. Weigand, P. Mayer, A. Schulz, J. Schmedt auf der Günne, *Angew. Chem.* 2005, 117, 7968-7971; *Angew. Chem. Int.* Ed. 2005, 44, 7790-7793.
- [3] P. Mayer, A. Schulz, A. Villinger, Chem. Commun. 2006, 1236– 1238.
- [4] A. Schulz, A. Villinger, Angew. Chem. 2008, 120, 614-617; Angew. Chem. Int. Ed. 2008, 47, 603-606.
- [5] Mes\*N(SiMe<sub>3</sub>)PCl<sub>2</sub> intrinsically eliminates Me<sub>3</sub>SiCl at ambient temperatures, resulting in the formation of Mes\*N=PCl.
- [6] a) B. Twamley, S. T. Haubrich, P. P. Power, Adv. Organomet. Chem. 1999, 44, 1–65; b) J. A. C. Clyburne, N. McMullen, Coord. Chem. Rev. 2000, 210, 73–99; c) R. J. Wright, J. Steiner, S. Beaini, P. P. Power, Inorg. Chim. Acta 2006, 359, 1939–1946.
- [7] a) N. Burford, J. C. Landry, M. J. Ferguson, R. McDonald, *Inorg. Chem.* 2005, 44, 5897–5902; b) N. Burford, K. D. Conroy, J. C. Landry, P. J. Ragogna, M. J. Ferguson, R. McDonald, *Inorg. Chem.* 2004, 43, 8245–8251; c) N. Burford, T. S. Cameron, K. D. Conroy, B. Ellis, M. D. Lumsden, C. L. B. McDonald, R. McDonald, A. D. Phillips, P. J. Ragogna, R. W. Schurko, D. Walsh, R. E. Wasylishen, *J. Am. Chem. Soc.* 2002, 124, 14012–14013; N. Burford, J. A. C. Clyburne, M. S. W. Chan, *Inorg. Chem.* 1997, 36, 3204–3206.

## Communications

- [8] E. Niecke, M. Nieger, F. Reichert, Angew. Chem. 1988, 100, 1781-1782; Angew. Chem. Int. Ed. Engl. 1988, 27, 1715-1716.
- [9] R. J. Davidson, J. J. Weigand, N. Burford, T. S. Cameron, A. Decken, U. Werner-Zwanziger, Chem. Commun. 2007, 4671–4673.
- [10] See the Supporting Information: a) chemical shifts (<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, <sup>31</sup>P{<sup>1</sup>H}); b) crystal data; c) full description of the experimental data, technique, and details; d) Natural bond orbital (NBO) partial charge calculations of a series of R-N=P<sup>+</sup> species; e) Although **5** and **6** are stable up to 210 and 140 °C, respectively, they slowly decompose when stored at RT.
- [11] A. H. Cowley, M. Lattman, J. C. Wilburn, *Inorg. Chem.* 1981, 20, 2916–2919.
- [12] a) R. Keat, D. G. Thompson, J. Chem. Soc. Dalton Trans. 1978, 634-638; b) O. J. Scherer, G. Schnabl, Chem. Ber. 1976, 109, 2996-3004; c) G. David, E. Niecke, M. Nieger, V. von der Gönna, W. W. Schoeller, Chem. Ber. 1993, 126, 1513-1517.
- [13] The synthesis of cationic azidophosphenium ions bearing an azido substituent directly on the dicoordinate phosphorus atom has been claimed before, but without any experimental proof: M. R. Mazieres, M. Sanchez, J. Bellan, R. Wolf, *Phosphorus Sulfur Relat. Elem.* 1986, 26, 97-99.

- [14] a) Sum of covalent radii: r(P) = 1.1 and r(N) = 0.7; N. Wiberg, E. Wiberg, A. F. Holleman, Lehrbuch der Anorganischen Chemie, 102. Aufl., Walter de Gruyter, Berlin, 2007, Anhang IV.
- [15] a) N. Götz, S. Herler, P. Mayer, A. Schulz, A. Villinger, J. J. Weigand, Eur. J. Inorg. Chem. 2006, 2051–2057; b) T. M. Klapötke, A. Schulz, Ab initio Methods in Main Group Chemistry, Wiley, New York, 1998, with a chapter by R. D. Harcourt about valence bond (VB) Theory; c) A. Schulz, I. C. Tornieporth-Oetting, T. M. Klapötke, Inorg. Chem. 1995, 34, 4343–4346, and references therein.
- [16] a) U. Müller, Chem. Ber. 1977, 110, 788-791; b) H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, Z. Naturforsch. B 1986, 41, 803-807; c) D. Schomburg, U. Wermuth, R. Schmutzler, Chem. Ber. 1987, 120, 1713-1718; d) A. H. Cowley, F. Gabbai, R. Schluter, D. Atwood, J. Am. Chem. Soc. 1992, 114, 3142-3144; e) U. Englert, P. Paetzold, E. Eversheim, Z. Kristallogr. 1993, 208, 307-309; f) A. H. Cowley, F. P. Gabbai, G. Bertrand, C. J. Carrano, M. R. Bond, J. Organomet. Chem. 1995, 493, 95-99; g) M. Larbig, M. Nieger, V. von der Gönna, A. V. Ruban, E. Niecke, Angew. Chem. 1995, 107, 505-507; Angew. Chem. Int. Ed. Engl. 1995, 34, 460-462; h) I. Schranz, L. P. Grocholl, L. Stahl, R. J. Staples, A. Johnson, Inorg. Chem. 2000, 39, 3037-3041